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2.6. Source/receiver flux calculations 
The most general configuration of source/receiver geometry is presented in Fig. 2.12. For this 

situation the total flux received by the area Ao   from  the source area So  can be determined using the 
formula [1] 
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where Φ is the total flux received by the area Ao  from the source area So , θ  is the angle made by the 
direction of emerging flux with respect to the surface of the source, dso is an infinitesimally small 
element of area at the point of definition in the source, dAo is an infinitesimally small elements of area 
at the point of definition in the receiver, ψ  is the angle made by the direction of coming flux with 
respect to the surface of the receiver,  R is the distance between the emitting point of the source and 
the receiving point of the receiver. 
Formula (2.28) is the fundamental equation describing the transfer of radiation from source to 
receiver. Many flux transfer problems involve this integration over finite areas of the source and the 
receiver. The problem can be quite complex analytically because in general L, θ, ψ, and R will be the 
functions of position in both the source and the receiver surfaces.  There exists also general 
dependency of L on direction embodied in this equation, since the direction from a point in the source 
to a point in the receiver generally changes as the point in the receiver moves over the receiving 
surface.  
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Fig. 2.12. General source/receiver geometry 

 We can distinguish two general cases of transfer of radiation from source to receiver useful for 
analysis of non-contact thermometers. First, when the radiation from the source comes directly to the 
detector. Second, when the radiation from the source comes to the detector through optical elements.  

2. Geometry without optics 
 The equation (2.28) can be significantly simplified in three cases that are often met in practical 
radiation measurement.  

For all three cases the angular dimension of detector is assumed to be small. This assumption 
is fulfilled in most practical cases. The differences between the mentioned above three cases are 
connected with size of source.  
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 For the first case we have a large circular or quasi-circular source irradiating a small area 
detector as shown in Fig. 2.13.  
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 Fig. 2.13. Geometry of a circular source irradiating a small detector  

For this case the flux received by the detector can be calculated from this formula 

 AL ×=Φ θπ 2sin  (2.29) 

where  Φ is the flux received by the detector, L is radiance of the source, θ  is half of the angle that 
source subtends from the center of the detector, and A is the detector area. 

For the second case a source of infinite size irradiates the detector. Then the angle  θ =90°, sin 
θ=1 and the flux received by the detector can be calculated from this formula 

 AL×=Φ π . (2.30) 

For the third case, a small area source of dimensions much smaller than the distance R irradiates the 
detector. In this case the flux Φ  can be calculated using another  formula  

 2R
ALS ××=Φ  (2.31) 

The presented above formulas (2.29 –2.31) are simple. Nevertheless they enable estimation of the flux 
obtained by a detector irradiated  by many sources used in practice.  

3. Geometry with optics 
A block of optics before the detector is used in  almost all non-contact thermometers. This 

block is used to limit the field of view of the detector and to increase the radiation that comes to the 
detector. Typical optical configuration during measurements with such thermometers is shown in Fig. 
2.14.  

Let us assume a typical situation when the detector is put exactly into the image plane of the 
tested object, and it can see, due to the cold shield, only the optics. Next, we assume that  a well-
corrected imaging aplanatic optics, that fulfils the sinus condition, is used. 
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Fig. 2.14.  Typical optical configuration during measurements with systems using an optical 
block before the detector 

 The radiation emitted by the surface determined by the detector angular dimensions with the 
solid angle determined by the area of the optical objective and distance optics-object reaches the 
detector. Derivation of formulas that enable calculation of the flux received by the detector, for the 
case shown in Fig. 2.14, on the basis of the fundamental equation (2.28) are complicated. Therefore, 
there will start the final formula that expresses the irradiation in the detector plane  

 '2sin mo uLE πτ=   (2.32), 

where π is pi, τo  is the optical transmittance, L is the object radiance,  '
mu  is the angle between the 

optical axis and the maximal aperture ray in the image space, 'sin mu   is numerical aperture  of the 
optical system in the image space. 
  Formula (2.32) is not too convenient as it requires knowledge about the parameter rarely known: 
the  angle between the optical axis and the maximal aperture ray in image space '

mu .  Therefore it is 
desirable to replace this angle with typical parameters describing optical system like its focal length f’, 
aperture diameter D  and distance between the optics and the tested object s.  
For situations presented in Fig. 2.14, using classical geometrical relationships  and the well-known 
Newton formula we have 
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After putting  Eq. (2.33) into  Eq. (2.32) we obtain 

 



















+










−

+

=
222

2

2'
''4 D
fs

ff

LDE oπτ . (2.34) 

 Formula (2.34) is equally general as  formula (2.32) as it enables calculation of the radiant irradiance 
E for any distance s but it requires knowledge about only typical parameters of any imaging optics: D 
and f’. 
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 Now let us consider a case that quite often occur in many applications when the distance s is many 
times longer than the focal length f’ (s >> f’). For such a situation the formula (2.34) simplifies to a 
new form 

 [ ]14 2 +
=

F
LE oπτ , (2.35) 

where F is the optics F-number that equal the ratio of the focal length f’  and the aperture diameter D.  
 Many optical objectives used in non-contact thermometers, especially in thermal cameras, are 
systems of F-number higher or close to 2. For such systems F2 >>1 and the formula enabling 
determination of the irradiance in the focal plane simplifies even further  

 24F
LE oπτ

= . (2.36) 

 Eq. (2.36) is used in derivation of many theoretical models of parameters of systems used to register 
optical radiation like NETD, MRTD or MDTD of infrared imaging systems. However, it is necessary to 
emphasize that  Eq. (2.36) and the models derived from it are based on two important assumptions: the 
object is located in optical infinity (s >>> f’) and that optics of high F-number is used. When these two 
assumptions are not fulfilled the application of Eq. (2.36)  can bring significant errors of estimation of 
the irradiance E. These assumptions are not fulfilled, for example, in optical microscopy where the 
distance s  is short and F is low.  Let us determine the irradiation E  for such a case.   
 For a well designed optics that fulfils the sinus condition the lateral magnification of the optical 
system β equals 

 ,sin
sin

u
u=β . (2.37) 

On the basis of geometry rules and the Newton formula we can derive a relationship between 
numerical aperture in imaging space 'sin mu  and the lateral magnification β 
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that gives a new formula enabling determination of the irradiance E  
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  Eq. (2.39) shows that that the irradiance E  decreases when the lateral magnification  β of the 
optical system increases. Similarly,  formula (2.34) suggests that the irradiance E decreases  when the 
distance s decreases. Generally, both  Eq. (2.34) and  Eq. (2.39) show that the maximum irradiance E 
occurs  when the measured object is in infinity and lateral magnification equals null (s=∝ , β=0). For 
any other value of the distance s or lateral magnification β, the irradiance E will be lower.  Let us 
define as  magnification factor MF the ratio of the maximum irradiance E for theconditions s=∝ , β=0 
to the irradiance E for any other value of the s or  β. The magnification factor MF  can be determined 
using the following formulas  
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 Graphical presentation of   Eqs. (2.40-2.41) is shown in Fig. 2.15 - Fig. 2.16.  
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Fig. 2.15. Dependence of the magnification factor MF on the distance object-optics s 
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Fig. 2.16. Dependence of the magnification factor MF on the optical lateral magnification ββββ 

 The magnification factor MF  carries information how many times the irradiance E at optics focal 
plane is lower than for the ideal situation when the distance s equals infinity and the lateral 
magnification β equals null.  From formulas (2.40) and (2.41) we can conclude that the factor MF 
varies from 1 to infinity and that it decreases with the distance s  and increases with the lateral 
magnification β. As shown in Fig. 2.15 the dependence of MF on the distance s is significant for the 
distances s below about 20 f’. In case of infrared microscopy (Fig. 2.16), when the lateral 
magnification  β>1, the values of MF are even higher. Consequences of these conclusions are 
significant as many projects to design thermal microscopes of high temperature resolution failed 
because of the presented dependence of the irradiance E on the magnification β.   


